New Opportunities for UV-Curable Powder Coatings

Ryan Schwarb Keyland Polymer Ltd.

Manuf acturer of U-Curable Powder Coatings


RadTech EXPO 2012

April 30 – May 2

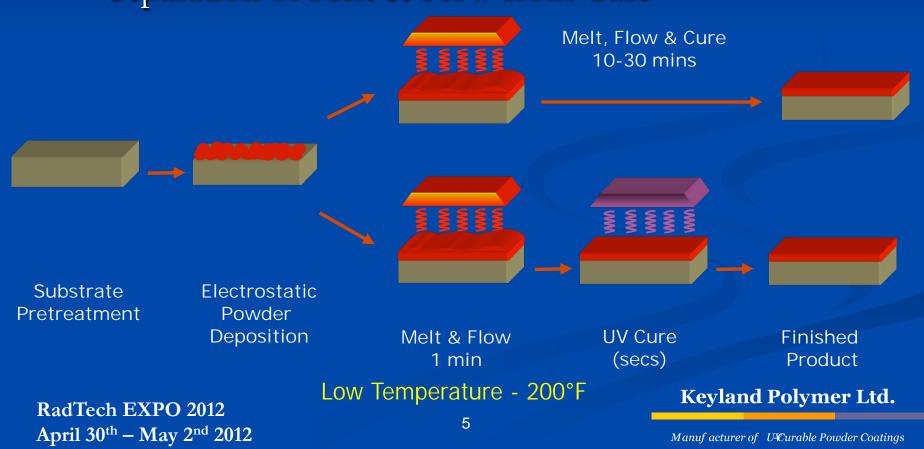
Chicago, IL


Outline

- UV-Cured Powder Coatings Overview
- Application Benefits
- UV-Cured Powder Chemistry
- Coating Performance/Applications
- Sustainability
- Future Opportunities & Conclusions

Coating Industry Today

Industrial Coatings Market


 Radiation cure products are growing faster than the total coatings market

Powder Coating

- Thermoset or thermally cured powder coatings were developed in the 1960s as functional coatings and have been adapted and developed for a variety of applications
 - Powder coatings provide superior wear resistance, barrier properties, and cost effectiveness
 - Products include home appliances, industrial equipment, automotive primer, top coat
 - Powder coatings have no VOCs or HAPs
 - Metal substrates are ideal for electrostatic powder application
 - Thermal cure cycle for powder coating ranges from 20 to 60 minutes depending on chemistry and part geometry

UV Powder Coatings

Differentiating characteristic of UV-cured powder coating
 Separation of Melt & Flow from Cure

UV Powder Formulation

Recto In	coturented
Resin – Un	saturated

Photo Initiator

Surface and Depth

Flow Control Agent

Degassing

Pigments

Filler/Extender

Additives

Specific Property

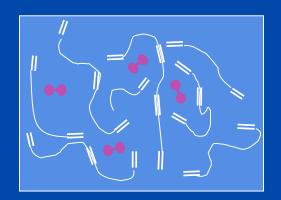
$$60 - 95$$
 wt $\frac{0}{0}$

$$0.5 - 3.0 \text{ wt } \%$$

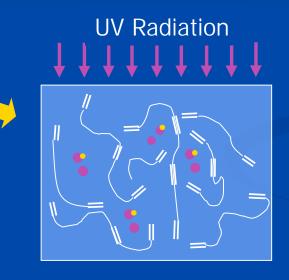
$$0.5 - 2.0 \text{ wt } \%$$

$$0.5 - 4.0 \text{ wt } \%$$

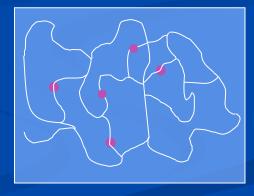
$$0.1 - 20$$
 wt %


$$0 - 35$$
 wt %

$$0.25 - 1$$
 wt %


UV Formulation

- UV Curing
 - Surface temperature 200°F 240°F

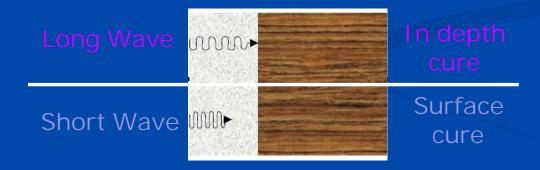

Molten Film

unsaturated resin + photoinitiator

photoinitiator breaks to form free radicals

resins cross link

UV Curing Parameters


- Intensity
 - Power or density of UV energy
 - Typical 1000 3000 mW/cm² UV V
 - Ideal conditions high intensity over short time
- Exposure
 - Total energy received at coating surface
 - Typical 1000 3000 mJ/cm² UV V

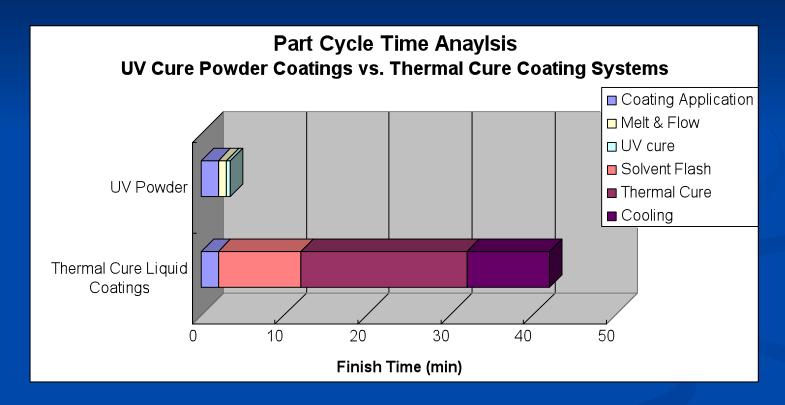
Intensity (mW/cm²) X time (secs) = Exposure (mJ/cm²)

Spectrum

UV Spectrum

- UV Spectrum required for different applications
 - Clear/Tints Mercury
 - Opaque Iron additive and Gallium additive Mercury

Application Process Advantages


- Powder Coating Advantages
 - Easier to blend, process and control during application
 - Easily cleaned up with an industrial vacuum
- Powder coatings can be reclaimed and re-sprayed or sprayed to waste 98% material utilization
- Color changes do not require any purging materials or solvents and can be accomplished in minutes

Environmental Benefits

- UV-cured powder coatings are solvent free and do not contain any VOCs or HAPs
 REACH Compliant
- Waste & Permits
 - No sludge, solvent handling or disposal
 - EPA permits
 - Solvent incineration
 - Costly waste disposal
- Efficient material usage less material waste
- Non toxic recyclable Zero Waste Stream operation

Operational Efficiencies

Total Cycle Time

UV Powder – 20 minutes Thermal Liquid Cure – 1 hour plus

UV Powder Process Benefits

- Higher Quality Finished Products
 - Minimizes substrate thermal exposure
 - Reduces out gassing
 - Reduces potential for substrate degradation
- Lower Cost of Quality
 - Ability to adjust faster on the fly
 - Reduced number of parts on the line lower work in progress
 - Fewer defects

Finish Capabilities

Multi- Component

Metallic

Keyland Polymer Ltd.

UV Powder for MDF Substrates

Test Standard	Category	Test Description	UV-W06-SS2	UV-W06A-SS2
ASTM D4138 Method A	Film Thickness	Tooke Gauge - Destructive	3-4 mils	3-5 mils
ASTM D4060	Abrasion Resistance	Taber Abrasion Test - CS-17 Wheel 500gm, 500 cycles	32.4 mg loss	29.1 mg loss
ASTM D3363-05	Scratch Resistance – Pencil Hardness	Hardness – Wolff-Wilborn 300 gm load, 45° / no scratch	2Н	ЗН
ASTM D523	Gloss Measurement	60° NOVO-GLOSS meter	22-25 units	16-20 units
NEMA LD3-1995	Impact Resistance	224 g steel ball (1/2 lb) 1 ½" dia.	No cracking at 55"	No cracking at 35"
NEMA LD3 - 2005 3.4	Clean ability / Stain Resistance	Reagents: 10% citric acid, vegetable oil, coffee, milk, catsup, mustard, vinegar, red lipstick, grape juice, black permanent marker, water washable black marker, and # 2 pencil	No permanent effect on sample surface	No permanent effect on sample surface
	Cure	MEK swap - 50 double rubs	No softening or color loss	No softening or color loss
NEMA LD3 - 2005 3.4	Hot water	Pool of boiling water placed on surface, pot placed in water for 20 minutes	No blistering	No blistering
ASTM D3359 Method B	Adhesion	Cross Hatch Adhesion – MDF must be present on piece of coating removed	No loss of adhesion	No loss of adhesion

Plastic Substrates

- UV Powder on Plastics
 - Reduce inventory
 - Reduce costs

Plastic Substrates	Pretreatment	Cross Hatch	Impact Resistance	Pencil Hardness
ABS	Yes	5B	35"	2H
Nylon 6	Yes	5B	50"	2H
PPO	No	5B	50"	2H
Polyamide	Yes	5B	50"	2H
SMC	Yes	5B	50"	2H

Heat Sensitive Substrates

- RIM reaction injected molding (high density urethane foam)
- Heat sensitivity < 300°F
- Porous substrate

Film Thickness	ASTM D 4138 Method A	3.0 mils
Adhesion	ASTM D3359 Method B	5B
Impact	ANSI 124.5 (1.5" dia., ½ lb steel ball)	35" PASS
Coating Deflection	3"x9" deflected 1"	PASS

Heat Sensitive Substrates

- Composites Carbon Fiber
 - Required temperature below 300°F
 - Conductivity ideal for electrostatic coatings

RadTech EXPO 2012 April 30th – May 2nd 2012

Metal

		Fe-P	Zn-P	Aluminum
Hardness	ASTM D3363	H-2H	H-2H	
Film Thickness	ASTM D 4138 Method A	2.0 mils	2.5 mils	2.0 mils
Adhesion	ASTM D 3359 Method B	5B	4B	5B
Impact - Direct	ASTM D 2794	160 in/lb	160 in/lb	NA
Conical Mandrel	ASTM D 522			PASS 1/16"

Corrosion Resistance

- ASTM B 117 < 1/8" Salt Spray Test
- CRS –pretreatment Iron Phosphate

250 hrs

RadTech EXPO 2012 April 30th – May 2nd 2012

500 hrs

750 hrs

Chemical Resistance

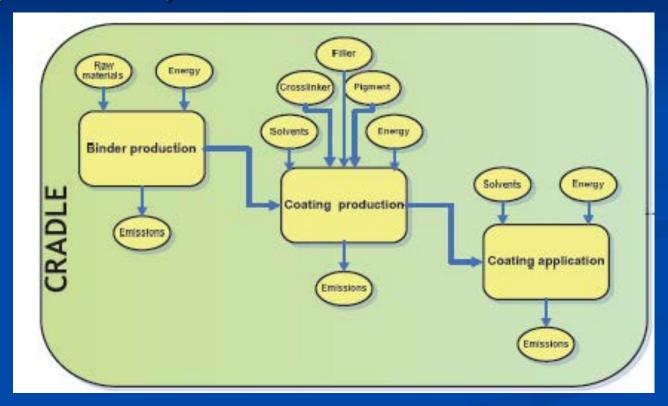
- Test Duration 24 hours
- Reagents un-covered for duration of test
- Verification of visual inspection of the treated surface with each reagent shows no damage or impaired surface results after 24 hour exposure

Reagent	Effect
Engine oil	no effect
Gearbox oil	no effect
Hydraulic oil	no effect
Brake fluid	Slight gloss loss
Antifreeze	no effect
Cold cleaner	no effect
Inert cleaner	no effect
E95	no effect
Unleaded gas	Slight/moderate gloss loss (a ring)
Diesel fuel	no effect
Battery fluid	no effect

Pre-Assembled Components

- Fully assembled components containing heat sensitive parts
 - Plastics
 - Lubricating oils
 - Rubber
 - Confined vessels
 - Electrical components and circuitry

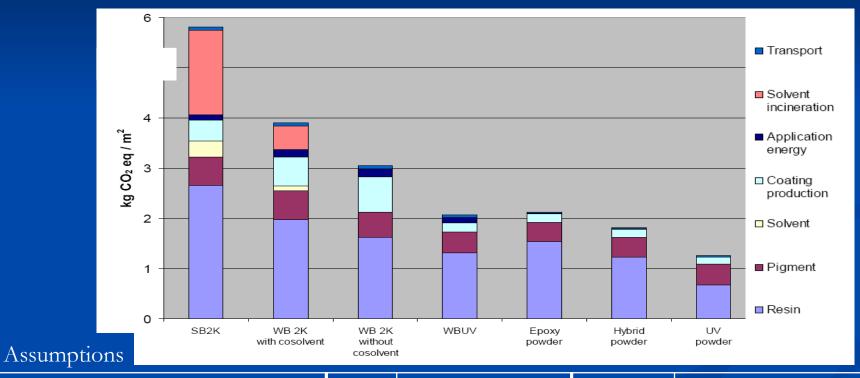
Sustainability


Assumptions for this Life Cycle Assessment			
Substrate	MDF, 19 mm		
Average Surface Area	0.5 m2, coated both sides		
Coating	TiO2		
Pigment/Resin/Filler	20/60/20 for all (avg)		
Solid Contents	100% all powders 50% for all 2-k systems 40% for waterborne UV		
Layer Thickness	150 um (6 mils)		
Curing Temperature	Depending on System		
Sanding	Not factored		
Utilization % (Transfer Efficiency)	95% Powder 90% Waterborne UV 60% 2k solventborne and waterborne		
Solvent Treatment	Incineration		
Durability, Functionality, End of Life	No differentiation		

Collaboration with DSM Coating Resins, originally presented at 2011 Decorative Surface Conference, Orlando, FL, USA.

RadTech EXPO 2012 April 30th – May 2nd 2012

Sustainability


Scope of Life Cycle Assessment

Collaboration with DSM Coating Resins, originally presented at 2011 Decorative Surface Conference, Orlando, FL, USA.

Sustainability

Coatings Life Cycle Assessment

Substrate : MDF 0.75" Thick Coating both sides Surface area – 5.4 sq ft

Pigment/Resin/Filler 20/60/20 for all (avg) TiO2

Solid Content 100% all powders 50% for all 2-k systems 40% for waterborne UV Utilization % (Transfer Efficiency) 95% Powder

90% Waterborne UV

60% 2k solvent and waterborne

RadTech EXPO 2012 April 30th – May 2nd 2012

Sustainability – Findings

- Solvent-based coatings have the highest environmental footprint
 - High CFP to produce and dispose solvents
- Waterborne paints (conventional and UV 100% solids) have lower environmental impact
- UV-curable powder coatings have the <u>lowest</u> environmental impact of coating materials

Coating Technology Impact on Carbon Footprint

	Solventborne-2K	Waterborne-UV	UV Powder
Carbon Dioxide, CO ₂ (kg/m²)	0.96 / mil of coating	0.35 / mil of coating	0.21 / mil of coating
Typical Coating Thickness	5 mils	2 mils	2 mils
Coating Carbon Footprint (CO ₂)	4.8 kg/m ²	0.7 kg/m²	0.41 kg/m ²

10 x More

Future of UV-Cured Powder Coatings

- Continue developing UV-cured powder coatings for heat sensitive substrates
- Heat sensitive substrates used in a variety of applications
 - Automotive
 - Consumer Products
 - Recreation

Conclusion

- UV-cured powder coatings present a new opportunity to finish a variety of heat sensitive materials
 - Low substrate thermal exposure
 - Durable powder coating finishes on heat sensitive substrates
- Provide safe, non-toxic environmentally friendly finish
- UV-cured powder coatings have the <u>lowest</u> Carbon
 Footprint of any commercially available coating technology
- A safe, sustainable high value finishing technology for a wide range of heat sensitive substrates now and into the future

Keyland Polymer Ltd.

Contact Information

Ryan Schwarb

4621 Hinckley Industrial Parkway

Suite 8

Cleveland, OH 44109

Office 216-741-7915 Fax 216-741-7916

Email: rschwarb@keylandpolymer.com

www.keylandpolymer.com